Supramolecular Architecture from the Self-assembly of One-dimensionalCoordination Polymers and Hydrogen Bonds

Chun Hua GE ${ }^{1,2}$, Xiang Dong ZHANG ${ }^{1}$, Wei GUAN ${ }^{3}$, Qi Tao LIU^{1} *, Zhan YU^{1}, Li Yan LIU ${ }^{1}$
${ }^{1}$ Institute of Chemical Science \& Engineering, Liaoning University, Shenyang 110036
${ }^{2}$ Faculty of Chemistry, Northeast Normal University, Changchun 130024
${ }^{3}$ Department of Environmental Science, Liaoning University, Shenyang 110036

Abstract

The novel one-dimensional coordination polymer $\left\{\left[\mathrm{Cu}(\mathrm{L})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{BF}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}$ [$\mathbf{1}$, $\mathrm{L}=1,2$-bis(4-pyridinecarboxamido)ethane] was synthesized as single crystals and characterized by means of X-ray diffraction analysis, elemental analysis, IR spectroscopy and TG measurement. Structure $\mathbf{1}$ consists of looped chains. In addition, linked by hydrogen bonds, the one-dimensional chains were transformed into three-dimensional framework, which shows channels filled with anions and uncoordinated water molecules.

Keywords: Crystallization, coordination polymer, supramolecular chemistry.

The synthesis and characterization of coordination polymers have been a rapid growth area in recent years. The coordination polymers consist of 1D chains, 2D sheets or 3D networks in which metal-organic building blocks connected via coordinate and hydrogen bonds. They received considerable attention because of their versatile intriguing architectures, topologies and potential applications in materials ${ }^{1,2}$.

As rigid rod-like spacers, 4,4'-bipyridine and its analogues have been used to give rise a large number of interesting supramolecular architectures ${ }^{3}$. However, flexible bridging ligands have not been frequently employed to construct coordination polymers with transition metal ions ${ }^{4}$. Such ligands are attractive for their flexibility and conformation freedom (gauche and anti, Scheme 1), both conformers are able to perform as bifunctional ligands. Here we report our recent successful result about the construction of novel coordination Cu (II) polymer using a flexible ligand. We employ 1, 2-bis(4-pyridinecarboxamido)ethane (\mathbf{L}) as the ligand, because this compound has a

Scheme 1

[^0]long ditopic bridging spacer and the amido groups which are good donor and acceptor of hydrogen bond.
$\left\{\left[\mathrm{Cu}(\mathbf{L})_{2}\left(\mathrm{H}_{2} \mathrm{O}\right)\right] \cdot 2 \mathrm{BF}_{4} \cdot 6 \mathrm{H}_{2} \mathrm{O}\right\}_{\infty}$ (1) was synthesized by adding an aqueous solution of $\mathrm{Cu}(\mathrm{II})$ to ethanolic solution of \mathbf{L}, after 24 hours of stirring at room temperature, the resulting solution was filtered, and the filtrate was then allowed to stand at room temperature. Several weeks later, blue X-ray quality single crystals were obtained (41\% yield).

The structure was confirmed by elemental analysis ${ }^{5}$ and IR spectroscopy ${ }^{6}$. The signals at $1660,1640 \mathrm{~cm}^{-1}$ in IR spectrum, suggesting that the $\mathrm{C}=\mathrm{O}$ stretch and N atom from pyridyl ring is coordinated with Cu atom.

A single-crystal X-ray diffraction study revealed that $\mathbf{1}$ consists of linear chains ${ }^{7}$. The each $\mathrm{Cu}(\mathrm{II})$ atom is bonded to four pyridine nitrogens and one water molecule with pyramidal geometry. The copper ions are bridged by two crystallographically independent ligands forming looped chain as shown in Figure 1, which provides an intermetallic distance of $12.813 \AA$. Each ligand adopts gauche-conformation. The N6-C21-C22-N7 and N2-C7-C8-N3 torsion angles are -73.8° and -61.9° in $\mathbf{1}$, these parameters show that there is conformational difference between the two independent ligands. Ligands of each side of the chain has the same conformation. Chirality arising from that $\mathrm{O}(1), \mathrm{O}(2), \mathrm{O}(4)$ point outside the cycle and $\mathrm{O}(3)$ points inside the cycle which is included in the asymmetric unit .

The hydrogen bonds ($\mathrm{N} 6 \cdots \mathrm{O} 22.911 \AA$, N6-H6A ${ }^{\circ} \mathrm{O} 2163.3^{\circ}$, symmetry code: $1 / 2+\mathrm{x}$, $1 / 2-y, 1 / 2+z$) connect each chain with its two neighbors forming a two-dimensional layer (Figure 2b). Further hydrogen bonds (O1W $\cdots 32.775 \AA$ A O1W-H1A ${ }^{\cdots} \mathrm{O} 3152.2^{\circ}$, symmetry code: $3 / 2-\mathrm{x}, 1 / 2+\mathrm{y}, 1 / 2-\mathrm{z}$) link adjacent layers into three-dimensional framework, and the arrangement of those layers is in an A-B fashion (Figure 2c). As a result, chains are connected through 36 - and $56-$ membered rings. By doing so, two different motifs channels come into being (labeled as C 1 and C 2 in Figure 2c). The channels, which are roughly parallelogram in shape with dimensions of $9.0 \times 5.7 \AA^{2}$ for C 1 and $15.4 \times 5.7 \AA^{2}$ for C2. The uncoordinated water molecules and anions are arranged in such a way as to fill the large channels for its corrugated architecture, running on both sides of a single layer.

Figure 1 ORTEP drawing of the looped chain structure of 1 with 50% probability ellipsoids, uncoordinated water molecules and anions are omitted for clarity.

Figure 2 Formation of the three-dimensional framework

a) View of a one-dimensional chain down a axis; b) two-dimensional layer; c) three-dimensional framework showing stacked layers in A-B fashion; C1, C2 are different channels. Uncoordinated water molecules and anions are omitted for clarity; $\mathrm{H}=$ hydrogen bond.

Thermal gravimetric analysis (TGA) shows that $\mathbf{1}$ undergoes a gradual loss of 12.18% of total weight between $81.2^{\circ} \mathrm{C}$ and $109.1^{\circ} \mathrm{C}$, corresponding to the loss of six uncoordinated water molecules per formula unit (expected 11.96%). Above $109.1^{\circ} \mathrm{C}$, the sample shows no further weight loss up to $244.8^{\circ} \mathrm{C}$ at which temperature the compound decomposed.

Acknowledgment

This project is supported by the Natural Science Foundation of Education Bureau of Liaoning Province, China (No. 20021005).

References and Notes

1. R. Evans, W. Lin, Acc. Chem. Res., 2002, 35, 511.
2. B. Moulton, M. J. Zaworotko, Chem. Rev., 2001, 101, 1629.
3. J. Zhang, M. M. Matsushita, X. X. Kong, J. Abe, T. Iyoda, J. Am. Chem. Soc., 2001, 123, 12105.
4. M. L.Tong, Y. M. Wu, J. Ru, X. M. Chen, H. C. Chang, S. Kitagawa, Inorg. Chem., 2002, 41, 4846.
5. Anal. Calcd for $\mathrm{C}_{28} \mathrm{H}_{42} \mathrm{~B}_{2} \mathrm{Cu}_{1} \mathrm{~F}_{8} \mathrm{~N}_{8} \mathrm{O}_{11}$ 1: C, $37.21 ; \mathrm{H}, 4.68 ; \mathrm{N}, 12.40$. Found: C, 37.46; H, 4.55; N, 12.81 .
6. Selected IR (KBr, cm^{-1}): 3440 (s), 3296 (s), 3080 (w), 2940 (w), 1660 (s), 1640 (m), 1475 (m), 1385 (s), 1300 (m), 860(w).
7. Crystal data for 1: monoclinic, space group $P 2_{1} / \mathrm{n}$, with $a=12.813(5) \AA, b=12.734(5) \AA$, $c=22.911(10) \AA, \beta=92.777(7)^{\circ}, \quad V=3734(3) \AA^{3}, Z=4, D_{c}=1.608 \mathrm{~g} / \mathrm{cm}^{3}, \mathrm{R} 1=0.0622$, wR2= $0.1480[\mathrm{I}>2 \sigma(\mathrm{I})]$. Other crystallographic parameters have been deposited in the editorial office of CCL.

Received 20 January, 2003

[^0]: * E-mail: qtliu@lnu.edu.cn

